Operating Instructions

EC type examination certified

CONTENTS:

Safety Instructions

Application Instruction for use

Mechanical data
Electrical connection
Putting into operation

ELEKTRONIK

chapter contents page
1 Indicator lights on Frontpanel and switches for safe operation. 3
2 General Safety Instructions4
2.1 Prerequisites for using the folding machine protection system AKAS®. 5
3 Description and fields of application for the equipment. 6
3.1 General Instructions 6
3.2 Function Description / Characteristics 7
3.3 Function description during bending of flat sheet metal / bending of wavy sheet metal 8
3.4 Function description during Box bending / bending of small items 9
4 Mechanical data, dimension drawings 10
5 Mounting. 11
How to proceed during the mounting of the AKAS® -system. 11
1a. Overrun Traverse Measuring 11
5.2
2. Design of a Mechanical Suspension Device - void if Fiessler holders are used. 11
3. Mounting of the suspension devices at the ram. 11
4. Mounting of the AKAS® components on the holders. 12
5. Connection the AKAS® - wiring diagrams: see chapter 6 12
6. Adjustment of the AKAS® during first installationn 13
7. Adjustment of the of the AKAS®-LCF/SBM to the upper tool/table 15
8. Function Verification of all electrical connections in view of the safety classs 4 requirements. 16
9. Self-Acting Overrrun Traverse Test 16
6 Electrical connections -Descriptions / wiring diagrams 17
6.1 17
6.2
AKAS®-LCF/SBM -with additional safety functions (operation also without additional safety PLC). 18
$\begin{array}{ll}\text { AKAS®-LCF/SBM -w } \\ & \text { Functions / Terminals }\end{array}$ 19
Connection: 20
6.3.1 AKAS®-...F selectable Safety functions 21

1. Operation with additional safety control 21
2. Monitoring of the Foot Pedal 21
Connection: Foot Pedal for 1 Operator / 2 Foot Pedals for 2 Operators 21
3. Soft-braking if the Foot Pedal was released (Delayed Foot Pedal Reaction) 21
4. Overrun Traverse Control 21
5. Monitoring of the Stop Valves (EDM) 22
6. Monitoring of the door- and the Emergency OFF-circuits, Emergency-OFF of the Motor-driven rear stoppers 22
Connection: Reset Button wiring for the rear protective grid if operated without EDM 23
Connection: Safety light Grid (equivalent switching) as rear guard 23
Connection: Safety light Grid (antivalent switching) as rear guard 23
7. Installation operation/ protection by monitored slow speed wiithout activated protective field 24
Connection: when equivalent switching door contacts are used 24
Connection: when antivalent switching door contacts are used 25
8. Slow speed traverse information -Connection of traverse measuriung device 25
9.Enhancement of Switching-over tolerances of the valve position monitors 26
6.3.2 Programming of the safety functions by Hex switches 26
6.4 Displaying outputs, Indicator LEDs 28
-Muting lamp, adjustment control LE
-Outputs via serial RS232-interface 29
Service / Maintenance / Warranty 32
Order Codes 33
Terms 35

ELEKTRONIK

AKAS®-LCF/SBM

view of the receiver elements

Fig. 3.2
bendingline
view after removing the connection lid on the receiver
ajustment controll-Leds of the receiver elements E1, E2, E3 LEDs are on if the beam does focus at all (see page 14)

(2)lamp is on if the protective field of the AKAS is not activated lamp is flashing if EDM- or SP-input-signals are wrong (see page 28)
3 LEDs for safety outputs (OSSDs, Fail-Safe PNP) red LEDs are on if the OSSDs are in OFF status green LEDs are on if the OSSDs are in ON status
(4) LED is on if box bending funktion is activated

5 Indicator lights for in- and outputs
6 connection lid

Attention is drawn to all safety instructions by this symbol.

Particular attention must be paid to such instructions.
These operating instructions provide to the user important information concerning the correct use of the AKAS®. These instructions are a component of the light barrier concerned. It is essential that they are easily available at the location where the safety light barrier is installed. Before the initial operation of the AKAS®, all requirements detailed in these operating instructions must be observed. Other relevant regulations and the requirements of the employers' liability insurance associations have also to be complied with.

Mounting, initial operation and maintenance may only be performed by qualified persons.

Light barriers do not protect anybody from machine-caused flying objects.
The AKAS® protects fingers and hands that hold the sheet metal during the operation.
Therefore it does not protect during any fast engagement between the bending punch and the matrix short time before those are closed.
The protection function of the system is cancelled when the Muting lamp is on.
AKAS®-LCF/SBM does not protect the area between an upstand and the upper tool.
The front beam E1, which is located in front of the bending line, does not protect if the box-bending
function has been activated. (see Fig. 4.2)
The pivotal movement of the bending beam is not monitored. (see Fig. 4.1)

Injuries caused by the wheel of the bending beam (eg the risk of injury can be avoided
by an additional light curtain)

Fig.4.2

Hand injury when this is departing clamping
tool on the raised edge.

1. Use only tools with the same height in the same fixing on the press. All utilized tools must have one common bending line.
2. Attacks are mounted on the lower die, do not allow a downward movement.
3. The maximum allowable overrun traverse of the machine: $6 \mathrm{~mm} /$ AKAS®-LC...

The machine should have an automated overrun traverse control for the first stroke. If not, it can be realised by the AKAS®-...F and a cam controller or by the Fiessler AMS-system . Before the initial start-up, the overrun traverse must be checked either by using the test rod or by using an Overrun Traverse measuring device. (upon customer's request, Fiessler Elektronik will perform the Overrun Traverse Measuring on the customer's machine.) If one results of 10 consecutive measurements is larger than $6 \mathrm{~mm} / A K A S ®-L C . .$. , the fast speed must be reduced.
4. Muting signal If a light beam is interrupted by the clumping tool, the $A K A S ®$ would stop the working stroke immediately. Therefore the AKAS® must be muted before it gets interrupted by the clumping tool. To prevent an accidental disconnection of the labor movement, from an opening of $\leq 15 \mathrm{~mm}$ (AKAS®-LC...) the control system of the machine must send a Mutingsignal to the reciever.. Then the control system of the machine must reliably gua-

5. The protection of a folding machine by the AKAS® does not permit bending in the bottom of a box inside the box in fast speed.
6. The AKAS® does not protect:

-if the machine is only run in the work speed -AKAS will be interrupted during fast speed and the stroke wil be continued -if the overrun traverse of the press brake is too long -from squeezing during the bending operation -if the mutinglamp is constantly on

Fig. 5.1

Fig. 5.2
7. The hazardous state of the machine must be terminated by the sensor function.
8. The safety level (class 4) of the accident preventing light barrier should at least correspond to the safety level of the control system of the machine.
9. Laser beams may be deviated due to air currents, this may cause unwanted and unforeseen machine stops. Therefore the machine must be erected at a place free of air currents.

Acceptance test: the installation acceptance test and inspections should be carried out by a competent person in possession of all the information supplied by the manufacturer of the machine and the ESPE.
Upon customer's request, Fiessler Elektronik will perform the initial acceptance as well as the annual test. Additionally, customer training seminars on how to execute annual tests will be conducted at regular intervals.

The laser - accident preventing light barrier AKAS® is an electro sensitive protective and controlling device (ESPE) which has the function to protect operators from accidents.
This happens as follows : Before a part of the body is squeezed between two opposed moving machine parts, this part of the body interrupts at least one light beam. By this means the movement of the machine is stopped, before it comes to an injury.

AKAS®

- meets EN61496-1 and CLC/TS 61496-2 Typ4; ENISO13849 PL e, Kat4, MTTF>300y; EN62061 SIL3, PFH2, 38 E-10 1/h
- is self- monitoring without additionally wiring.
- easy to adjust after tool changing.

Operative range for the laser-accident preventing light barrier of the AKAS®-LCF/SBM types are: folding machines.

Fig. 6.1

Serial Numbers The serial numbers are located at the down side of the housings of both AKAS®-LC/SBM
AKAS®-LC... transmitter and AKAS®-LC/SBM receiver.

	systems with operating mode selection with integrated safety fuunctions
Funktionen / Eigenschaften	AKAS®-LCF/SBM
with / without Support self-adjusting onto different tool heights	without
max. Overrun Traverse of the press brake	6 mm
recommended turnover point from fast speed into slow speed (according to overrun traverse of the press)	15 mm
Detecting beams / Receiver elements	$1 / 3$
Inputs	
Overruntraverse control NLW	1 -selectable with / without
3 inputs for control of protection doors / emer-gency-OFF-circuit NA1, NA2, NA 3 for paired use 1 pair lateral door circuit, equivalent or antivalent, 1 pair rear door circuit , equivalent or antivalent, 1 pair emergency-OFF-circuit s	3 Pairs -selectable with / without
Stopp contactor control EDMO, EDMS	2 -selectable with / without
data of traverse in slow speed SGW	1 -selectable with / without
start / stop of closing stroke FUS, FUO	2 -selectable antivalent or equivalent switching
position control in slow speed SGO, SGS	2 -selectable antivalent or equivalent switching - selectable with / without foot pedal delay
selection of box bending KAST	1
safety point SP	1
Outputs	
Safety outputs for release of closing stroke OSSD1, OSSD2	2
release and Emergency OFF of the rear stoppers RXOK1, RXOK2	2
demand of a higher change-over point from fast speed into slow speed above the slug during box-bending HUSP	\vdots -
box bending function is displayed HUSP	1
output for messages RS 232 TXD	1
demand for slow speed SGA	1

Principle of function 1. Release the closing movement by activating the foot pedal. bending of flat sheet metal
 2. Machine closes in fast speed ($>\mathbf{1 0 m m} / \mathrm{s}$)

Fig. 8.1
3. After reaching the change-over point from fast speed to slow speed ($=10 \mathrm{~mm} / \mathrm{s}$) :

4. All Receiver elements are muted and the muting lamp is on. The bending procedure is finished.
(The fast speed mode and the slow speed mode are limited of about 2 min .)

Advice:
Caution! Use only tools with equal overall height within one fixing.

Bending of wavy sheet metal

Closing movement with interrupted protective field

The AKAS® system offers the possibility to execute a closing movement under monitored slow speed even when the protective field is interrupted by a wavy sheet metal.
After the interruption of the protecfive field and the release and reactivation of the foot pedal, the AKAS will deactivate the SGA output when the protective field is interrupted. By this, only slow speed will be enabled by the machine control (NC).
AKAS® provides a reaction time of about 200 ms for the machine control and then activated the safety switching outputs for the closing movement (OSSDs). The OSSDs remain activated as long as the AKAS® receives a slow speed message to SGS and SGO within the next $70 \mathrm{~ms}+$ the selected enhanced tolerance. A tolderance enhancement is possible only with the AKAS®F systems.

Function principle box bending

1. "Box Bending" is activated by the box bending button. The signal at the box bending input KAST must be high $(+24 \mathrm{~V})$ for at least 100 ms and after that low (0 V) for at least 100 ms .
(The box bending function can be canceled by twice activating the box bending button again)
2. AKAS® confirms the selection of the box bending by activating the output HUSP and the LED box-bending

Fig. 9.1
3. Release the closing movement by activating the foot pedal. The press closes in fast speed ($>\mathbf{1 0 m m} / \mathrm{s}$).
4. After reaching the change-over point from fast speed to slow speed ($=\mathbf{1 0} \mathbf{~ m m} / \mathrm{s}$) :

5. All Receiver elements are muted and the muting lamp is on. The bending procedure is finished.
(The fast speed mode and the slow speed mode are limited of about 2 min .)
6. After the bending procedure the box bending function is cancelled.

Bending of very

 small piecesIn the case of bending of very small pieces, which must be guided by the fingers, the box-bending function must be selected. Otherwise, the fingers would interrupt E1, which would lead to the switching off of the bending process !
 With activated box-bending function, a finger which is placed next to the slog on a large matrix, is not detected!!
housing type The aluminium housing of both transmitter and receiver are powder coated in silver. The optical head is made of acid-resistant spherically reinforced plastic (polyamide).
fastening fastening with shifting tenon blocks at the three side of transmitter and receiver housings

mounting bracket
Fig. 10.2

How to proceed: Step by step mounting the AKAS®	1	Overrun traverse measurement
	2	Design of the mechanical holders
	3	Mounting of the holders at the matrix
	4	Mounting of the AKAS® on the holders
	5	Connection of the AKAS® / Selection of the operating mode
	6	Adjustment of the AKAS® during first installation
	7	Function Verification of all electrical connections in view of the safety classs 4 requirements
	8	Self-acting Overrun Traverse Test

1. Overrun Traverse The machine should have an automated overrun traverse control for the first stroke. If not, it can Measurement be realised by the AKAS®-...F and a cam controller or by the Fiessler AMS-system. Before the initial start-up, the overrun traverse must be checked either by using the test rod or by using an Overrun Traverse measuring device.
(upon customer's request, Fiessler Elektronik will perform the Overrun Traverse Measuring on the customer's machine.) If the results of 10 consecutive measurements are larger than 6 mm AKAS $®$-LCF/SBM, the fast speed must be reduced.
2. design of the holders
3. Mounting of the holders at the matrix

- The dimensions of the self-supplied holders must be individually laid out according to the dimensions of the machine.
- If frequent tool change requires the presence of a swivable holder, this should be installed at the receiver arm, in order to leave the precise adjustment of the transmitter arm unchanged.
a) The holders must be mounted at the matrix in a way that the marks on transmitter and receiver correspond exaclty to the bending line. The receiver element E1 must face to the operator.
b) The lowest edge of both housings must be at the same level.
please observe! Transmitter and receiver of the $A K A S ®$ must not be subject to mechanical stress (e.g. bottles must not be placed on it). To prevent this and to protect the AKAS® from any damages, a solid protection cap should be always mounted.

4. Mounting the AKAS®

 on self-supplied holdersfastening bracket with tenon blocks at the rear

There are additional fastening possibilities with shifting tenon blocks at the three side of transmitter and receiver housings.
5. Connecting the AKAS® Wiring diagrams are shown in chapter 6 Electrical connections.

Choose the operating mode The functions are described in chapter 6.3
at ...F series The position of the Hex switches is described in chapter 6.5.2.

6. Adjustment of the AKAS® at the first installation

Advise!

AKAS®-LCF: E3, E1, E2
LEDs are flashing slowly about once per second: Machine has successfully stopped at the cam during the overrun traverse test, only when the cam is free again, the OSSDs can be enabled again. The ajustment controll-LEDs are flashing slowly until the machine is not opened completely.

AKAS®-LCF/SBM

adjustment \quad AKAS $®$ transmitter and receiver -LCF/SBM must be firmly attached to the matrix. (see Chapter 5.2)

The tip of the punch must be located on the bend line.

The upper edge of the thick plate potential (maximum 6 mm)
is positioned in the amount of the marker.

Then align the laser transmitter so that the laser beam parallel to the upper beam runs and hits the receiver. (Figure see p. 13)

Caution!

Should Plates $>6 \mathrm{~mm}$ thickness can be clamped, then the AKAS be further adjusted upward. In this case, a finger $>8 \mathrm{~mm}$ thickness directly on the table are not detected, and the finger is not protected when a sheet metal is clamped with a lower strength!

Top max. Sheet metal

Fig. 15.1

SP, SGS	$=0$
SGO	$=1$

Fast speed

SP, SGS = 1
SGO $=0$
Switching point Fast speed/slow speed

Fig. 15.2

7. Verification of all electrical connections referring to safety class 4

8. Automatic overrun traverse tes

According to prEN 12622, the overrun traverse of the machine should be verified automatically at the first stroke after its connection to power of the press brake or of the AKAS® and it must be repeated at least after 30 h , if the machine remains connected to power for a longer period of time.

The products of the AKAS®-...F product family can execute this overrun traverse test with the help of a cam scitch and a normally closed contact. For this, the length of the cam must correspond to the allowable overrun traverse plus the hysteresis of the cam switch. The maximum allowable overrun traverse must not exceed the value of 6 mm with the AKAS®-LCF .

This overrun traverse cam must be mounted in a way that the press is in the maximum closing speed when the cam switch is opened by the cam, and the stroke is started out of the upper dead center of the machine.

The overrum traverse test is carried out after every voltage reset and must be repeated every 24 hours. After the successful overrun traverse test, the press must be at first opened for the execution of one bending stroke. The ajustment controll-LEDs are flashing slowly until the press brake is not opened completely.

If the overrrun traverse is too long, the cam does not open the overrun traverse cam switch when the closing movement is stopped, and the AKAS will prevent the complete bending stroke in fast speed.

If the overrun traverse control is not carried out by the AKAS®, the machine control must carry out an overrun traverse test at least after a voltage reset. This overrun traverse test must be repeated within the next 30 hours.

Electrical data	
safety class	EN61496-1 and CLC/TS $61496-2$ Typ4; ENISO13849 PL e, Kat4, MTTF>300y; EN62061 SIL3, PFH2, 38 E-10 $1 / \mathrm{h}$
operation voltage	24 V DC, +/-20\%, SELV
max. power cunsumption	(no charge): max. 2,0 A, AKAS....LC: 0,5 A
protection from incorrect conProtection against all possibilities of errors is not provided.	
protection class	III
electrical connection	transmitter: AKAS®-LC.... angular piug receiver: integrated plug-in connector with M 32 as strain relief
connecting cables	transmitter: AKAS®-LC...: core max. 1 mm receiver: AKAS®-LC...: max. 1 mm
cable arrangement	Cables to be laid separately from high-voltage cables. The cable laying must be arranged in a way that no mechanical damage of the cable is possible. For that reason the cable must be installed in a reinforced hose if not protected by the machine
outputs	OSSD 1 and 2: Fail-Safe PNP outputs, max. 0,5A, with short-cut and side-current monitoring RXOK1 and 2: PNP-outputs with short-cut and side-current monitoring during switching on, max. 0,5 A SGA , HUSP, SEU2K, KAST (KAST: only when using the external muting lamp): PNP-outputs max. 0,5A TXD: RS 232 serial interface
inputs \quad FUO, FUS, SGO, SGS, SP, EDMO, EDMS, NA1, NA2, NA 3, NLW: 0 V / 24V DC +/- 20% \% 10 mA	
	KAST: : $0 \mathrm{~V} / 24 \mathrm{~V}$ DC +/- $20 \%, 25 \mathrm{~mA}$
response times	$1,5 \mathrm{~ms}$ between the interruption of a light beam and the disabling of the OSSDS
	10 ms between the release of the foot pedal orthe opening of a protective circuit and the disabling of the OSSDs
	10 ms between the opering of a protective circuit and disabling of the release of the rear stoppers RXOK1 \& -2
	$2,6 \mathrm{~ms}$ between the opeing of the overrun traverse cam switch and the disabling of the OSSDs during the overrun traverse test
time windows for the input signals (basic tolerances)	switch-over from stopped state into closing state after enabling of the OSSDs : 300 ms (only with operatiing mode with contactor/valve control EDM).
	switch-over into slow speed state when the start is carried out within the range of the safety point (at SP = 1): 100 ms after detection of the closing movement state by the EDM, i.e. 100 ms after enabling of the OSSDs when the press is operating without the EDM.
	switch-over into fast speed when the start of the press is outside the range of the safety point (at $\mathrm{SP}=0$): 100 ms after detection of the closing movement state by the EDM, i.e. 100 ms after enabling of the OSSDs when the press is operating without the EDM.
	switch-over into slow speed state when the start of the press with slow speed request (200 ms after SGA $=0$ has been transmitted to NC): 70 ms after detection of the the closing movement state by the EDM, i.e. 70 ms after enabling of the OSSDs when the press is operating without the EDM.
Tolerance enhancement	only with AKAS®-...F: max. 300 ms
environmental data	
ambient operation temp 0° bis $50^{\circ} \mathrm{C}$	
storage temperature	-25° bis $70^{\circ} \mathrm{C}$

Muting signal

Muting signal from the machine control system:
(Mutingsignal available from the contactor position control of the working stroke valve, from the pressure switch
 or from the AMS)
The muting signal out of the machine control must be laid out in a way that no muting signal is given to AKAS® if there is any malfunction of the involved switching elements (i.e. no release of a contactor or no switching over from fast motion into working motion) !

set up operation

The set up operation has to be carried out according to the description in chapter 6.5.1 function 7 on the AKASF systems, or the AKAS® must be switched off, the safety outputs of the AKAS® (OSSDs) must be muted, and the fast speed closing speed must be reliably excluded.
After the set up operation it must be made sure that this special muting of the OSSDs is cancelled.

Checklist			OK
	1	AKAS® is used on "foot operated fast motion" mode.	
	2	"Foot operated fast motion" should only be possible with activated AKAS®	
	3	During foot operated motion with AKAS®, the downward movement should only happen by pressing the foot pedal.	
	4	The valves relevant for the downward movement must be triggered as directly as possible by the Fail-Safe PNP outputs OSSD1 and OSSD2 to keep the overrun traverse as short as possible	
	5	In all operating modes except "Foot operated fast motion" the AKAS® must be disconnected from the power supply (=switched off).	
	6	The machine control system issues a muting signal with AKAS®-LC...: 15mm above the slug. (Mutingsignal coming from the contactor position control of the working stroke valve, from the pressure switch or from the AMS)	
	7	The machine control system prevents the fast speed during the closing movement if no static signal is given (SGA). This function of the press must not be necessarily safety-orientated.	
	8	When the muting signal is given, it must be guaranteed according to safety class 4 that the stroke of the machine is $<10 \mathrm{~mm} / \mathrm{s}$.	
	9	The box-bending function must be chosen and acknowledged by a button (change-over contact). Here a pedal is more advantageous, because by using it both hands stay free to hold the	
	10	After a voltage reset, an overrun traverse test is carried out.	
	11	The overrun traverse is smaller than 6 mm at the AKAS®-LC...	

AKAS®-LCF/SBM -with selectable safety functions

transmitter

Terminals of the transmitter		
Nr	designation	meaning
1	+S	+Ub transmitter
2	-S	-Ub transmitter
6	Erde	functional ground

Fig. 19.2

Machine-Safety monitoring by AKAS®-...F

wiring diagramm 1/p. 20

ELEKTRONIK

AKAS®-LCF/SBM -with selectable safety functions

1. operation with additional

Safety PLC
(e.g. Safety PLC FPSC)

The safety PLC (e.g. FPSC) is responsible for the fast speed / slow speed position control and provides this state to the $A K A S ®$ inputs SGO, SGS and SP vis a signal line. (see wiring diagram 1/S. 29) in fast speed: at SGO, SGS and SP $=0 \mathrm{~V}$ in slow speed: at SGO, SGS and SP =+24 V
During this, the safety PLC must monitor the signal line to the AKAS® for eventual short-circuits against potential conductiong lines.

2. monitoring of the foot

 In the operating modes "without additional Safety PLC" the monitoring of the foot pedal is permanently pedal present. AKAS $®$ activates the safety outputs OSSDs only if the foot pedal is permanently pressed. AKAS® monitors both positions of the foot pedal and requires:if the foot pedal is released: at $\mathrm{FUO}=+\mathbf{2 4} \mathrm{V}$ and at $\mathrm{FUS}=\mathbf{0} \mathrm{V}$ (see wiring diagram 4a/S. 21) if the foot pedal is pressed: at FUO $=\mathbf{0 V}$ and at $\mathrm{FUS}=+\mathbf{2 4} \mathrm{V}$
The monitoring function is able to monitor even 2 connected foot pedals, if two operators work at the press brake and if the foot pedals are correctly wired as shown in wiring diagram 4b/S. 36.

In the operating modes "with additional Safety PLC" the monitoring of the foot pedal can be cancelled, by selecting: " equivalent switching inputs for enabling the closing stroke".
In this case, both AKAS® inputs FUS and FUO are triggered $\mathbf{+ 2 4} \mathbf{V}$, if a closing movement of the press brake is wanted.
wiring of foot pedal for one-man operation operation with monitoring of the foot pedal

wiring diagram 2a/p. 21
wiring of foot pedal for one-man operation operation without monitoring of the foot pedal

wiring of foot pedals with key switch for one - or two-man operation operation with monitoring of the foot pedal

wiring diagram 2b/p. 21
3. soft-breaking when the foot-pedal was released (foot pedal response delay)

4. Overrun traverse control

During the operating modes without additional safety PLC, a foot pedal response delay of the AKAS® safety outputs (OSSDs) of about 30 ms after the release of the foot pedal during the fast speed closing stroke can be selected.
When the foot pedal is checked also by the machine control, the control will execute an easier, smoother breaking via the proportional valves of the closing movement during this time, just before the OSSDs of the AKAS® disable the other closing stroke valves.

The overrun traverse control is realized by a cam switch with a normally closed contact. For this, the length of the cam must correspond to the allowable overrun traverse plus the hysteresis of the cam switch. The maximum allowable overrun traverse must not exceed the value of 6 mm with the AKAS®LCF/SBM. This overrun traverse cam must be mounted in a way that the press is in the maximum closing speed when the cam switch is opened by the cam, and the stroke is started out of the upper dead center of the machine.

The overrum traverse test is carried out after every voltage reset and must be repeated every 24 hours. After the successful overrun traverse test, the press must be at first opened for the execution of one bending stroke. The ajustment controll-LEDs are flashing slowly until the press brake is not opened.
If the overrrun traverse is too long, the cam does not open the overrun traverse cam switch when the closing movement is stopped, and the AKAS will prevent the complete bending strokes in fast speed.
If the overrun traverse control is not carried out by the AKAS $®$, the machine control must carry out an overrun traverse test at least after a voltage reset. This overrun traverse test must be repeated within the next 30 hours.

ELEKTRONIK

5. Control of the stop

 contactors (EDM)AKAS® monitors in a safe way both positions of the stop- and the fast speed closing state of the contactor position monitors and switching contactors and requires:
in fast speed state at EDMS $=+24 \mathrm{~V}$ and at EDMO $=0 \mathrm{~V}$
in Stop state at EDMS $=0 \mathrm{~V}$ and at EDMO $=+24 \mathrm{~V}$ (see wiring diagram 2/S.39)
During the closing movement in slow speed, EDMO has to be $=0 \mathrm{~V}$, EDMS is not monitored.
After the relase of the safety switching outputs (OSSDs) the AKAS® requires a switch-over of the EDM signals no later than 300 ms + the programmed tolerance enhancement.
In the operating modes with additional safety PLC (e.g FPSC) the safety PLC must carry out the monitoring of the stop contactors.

The protective doors and the emergency OFF-buttons are evaluated by double-channel inputs. As soon as at least one inout is disab led, i.e. is in OFF state, the closing movement will be stopped immediately by switching OFF of the OSSDs, and the movement of the rear stoppers is prevented by the disabling of the double channeled release RXOK1 and RXOK2. A continuation of the press operation in only possible if all relevant protective switching circuits are disabled and and then closed again, and if afterwards the respective rest button is activated.

If the protective side doors are opened, $A K A S ®$ permits the movement of the rear stoppers after having activated the respective reset button. The closing movement of the press is permitted only during slow speed state. For this, AKAS® requires the prevention of the fast speed by the NC, by disabling the output SGA. AKAS® monitors the slow speed state during the closing movement. During this, the protective field of the AKAS® is not active.

During operation with foot pedal monitoring (antivalent foot pedal contacts), the reset is carried out after the disabling and re-enabling of the Emergency-OFF-Circuits and of the lateral protective metal grids. This is carried out by activation of an normally closed contact butto., which is connected in series to the normally closed foot pedal contact at FUO (see wiring diagram 1/p. 20 and 3b/p.22) .
The Reset after the disabling and re-enabling of the rear protective grid is carried out during the operation with EDM by activation of a normally closed contact button, which is connected in series to the normally closed contactor controls at EDMO. (see wiring diagram 3a/p.22).
During the operation without foot pedal monitoring (equivalent triggering of FUO and FUS) the reset of all protective circuits is carried out by a normally open contact which is connected between +24 V and
a. Reset button for rear safeguard at operating mode without EDM
b. Reset button for all b. Reset button for al
Protective doors and Protective doors and
emergency OFFs at operating mode without monitoring of the footpedal

Protective doors and emergency OFFs
at operating mode withEDM / protective doors equivalent switching / with monitoring of the

depending on operation mode further contacts

EDMO. (see wiring diagram 3a/S.22)
The ermegency-OFF-circuits are equivalent switching, i.e. the eemergenca-OFF-buttons must have 2 normally closed contacts. When laying out the circuits of the protective doors, you may choose from either the equivalent switching protective door contacts, i.e. 2 normally open contacts per door switch, or antivalent switching contacts, i.e. only one normally open and normally closed contact per door switch. The secons possibility, however, is only available with the operation modes without additional safety PLC. The connection of the emergeny OFF- circuits and the equivalent protective door contacts to the reset buttons when EDM is selected, is shown on wiring diagram 3b/S. 22

ELEKTRONIK

AKAS®-LCF/SBM
-with integrated safety functions

6a. Rear safeguarding with lightgrid with equivalent switching outputs

	Receiver			
	ULVT	TLVT	ULCT	TLCT
+24V	7	7	1, 2, 4	1,2,4
OV	6	6	7	7
OSSD1	3	1	5	5
OSSD2	4	2	6	6

ULVT / TLVT:
Dip-switches (see picture) -without restart interlock -without EDM -OSSD equivalent

ULCT / TLCT:

programming the operation mode of the lightgrid:
-without restart interlock -without EDM

6b. Rear safeguarding

 with lightgrid with antivalent switching outputsInstead of using a rear protective metal grid, a safety light grid with equivalent switching outputs, e.g. type Fiessler ULVT / TLVT or ULCT / TLCT as shown in wiring diagram 4/p. 23 is possible.

Protective doors and emergency OFFs and light grid ULVT / TLVT or ULCT / TLCT for rear safeguarding at operating mode equivalent protective door control pairs / with EDM / with monitoring of the foot pedal / with Start interlock for the lightgrid

Only to use the operation modes D...D... or F...F...!
These modes activates Start interlock for the rear safety lightgrid! (see chapter 6.3.2)

As alternative, the connection of a light grid with antivalent switching outputs is also possible, like p.e. the Fiessler light grid EU2K 500/2. Wiring Diagram 5/p. 23 shows the connection of the Fiessler light grid EU2K 500/2 as a rear safeguard. In this case, the switches of the lateral protective grids must have antivalent switching contacts (1 normally closed and 1 normally open contact each) and the operating mode with antivalent switching protective door circuits must be selected. In this case, the connector 1 at the transmitter of the EU2K 500/2 must be wired to the output S_EU2K of the AKAS®.
ble, the lateral protective grids are not monitored. Every switching-over of the selector, the reset buttomn must be activated for the Emergency-OFF circuits and the circuits of the lateralprotective doors.

Protective doors and emergency OFFs and light grid EU2K 500/2 for rear safeguarding at operating mode antivalent protective door control pairs with EDM / with monitoring of the foot pedal

ELEKTRONIK

AKAS®-LCF/SBM
-with integrated safety functions 6.3.1
7. Installation operating mode, i.e. protection by monitores slow speed without avtivated protective field during operation with door monitoring
operation with equivalent switching protective door contacts

A selector switch provides the possibility to choose between operating mode with activated protective field of the AKAS® and fast closing speed or operating mode with protection only by monitored slow speed closing, see Wiring diagrams $6 /$ p. 24 und $7 /$ p. 24 . If the selector switch is activated, the protective field of the AKAS® is muted (bridged). This state is displayed by the shining muting lamp. By disabling of its output SGA , AKAS® requires the NC to carry out only cycles in slow speed, which is monitored by the AKAS®. Given the fact that in this operating mode, only cycles in slow speed are possible, the lateral protective grids are not monitored. Every switching-over of the selector, the reset buttomn must be activated for the Emergency-OFF circuits and the circuits of the lateralprotective doors.
operation with activated protective field of the AKAS® and slow speed closing movement (selector not activated) operation with only protection by monitored slow speed closing movement (selector switch activated)

operation with antivalent switching protective door contacts
operation with activated protective field of the $A K A S ®$ and slow speed closing movement (selector not activated) operation with only protection by monitored slow speed closing movement (selector switch activated)

8. slow speed traverse information

During the operation with slow speed traverse information, the upper receiver elements are only muted if $\mathrm{a}+24 \mathrm{~V}$ signal is given to KAST. This signal is provided by a traverse measuring system (e.g. Fiessler AMS, or NC) which indicates that the traverse has been actually covered. By this, the upper receiver elements remain activated as longh as possible even in the case of a very low slow speed, and intermediate stops during slow speed. By this, even in slow speed range, protection by the AKAS® is provided until the introduction of the operator`s fingers between bending punch and sheet metal is made impossible. The traverse is at AKAS I LC F: 14 mm , at the AKAS II F: 6 mm , and at AKAS III F: 2 mm in normal operation and 5 mm in box bending operation. Connection: see wiring diagram 8/p.25.
connection with slow speed traverse nformation

wiring diagram 8/p. 25
9. selectable switch-over time tolerance of the valve position monitors

AKAS® dynamically monitors the valve position signals, i.e. the individual states of the valve position signals must change within a certain time. The basic tolerances for the switching-over of the valve position monitors from stop state into closing movement and from fast speed movement into slow speed movement or vice-versa can be enhanced by additional 300 ms .

The basic tolerances have the following values:

Switching-over from stopped condition into closing movement after the enabling of the OSSDs: 300 ms , (only with operating mode "Monitored EDM"

Switching-over into the slow speed condition when the start is within the range of the safety point (SP = 1):
100 ms after from the detection of the closing movement consition by the EDM,
i.e. 100 ms after the enabling of the OSSDs during operating mode "without EDM".

Switching-over into the fast speed condition when the start is outside the safety point (when SP = 0): 100 ms after the detection of the closing movement condition by the EDM, i.e. 100 ms after enabling of the OSSDs during operating mode "without EDM".
Switching-over into the slow speed condition, start with request for slow speed (200 ms after SGA $=0$ has been sent to NC):
70 ms after the detection of the closing movement conditin by the EDM, i.e. 70 ms after the enabling of the OSSDs during operating mode "without EDM.".

AKAS®-LCF/SBM
By the use of 4 Hex switches different operating modes can be selected.
The Hex-switches must always be programmed in pairs (1 and 3, 2 and 4). Within each pair, equal values must be programmed.

1. Operating modes without additinal safety control
with / without monitoring of protective doors / monitoring of the emergency off circuits (inputs equivalent)

Hex-switches 1 and 3 Hex-switchpositions	start / stop of closing stroke		Start interlock for the rear lightgrid	overrun traverse control	Monitoring of protective doors / Emergency OFF equivalent switching	Hex-switches 2 and 4 Hex-switchpositions	EDM stop valves monitoring	slow speed traverse information	* switching over tolerance enhancement of the valve position monitors
	Monitoring of the foot pedal antivalent	soft-breaking when the foot-pedal was released							
8	with	with	without	without	without	0	without	without	$+0 \mathrm{~ms}$
						1	without	without	$+100 \mathrm{~ms}$
9	with	without	without	without	with	2	without	without	$+200 \mathrm{~ms}$
						3	without	without	$+300 \mathrm{~ms}$
A	with	with	without	with	without	4	without	with	$+0 \mathrm{~ms}$
						5	without	with	+100 ms
B	with	without	without	with	with	6	without	with	$+200 \mathrm{~ms}$
						7	without	with	$+300 \mathrm{~ms}$
C	with	without	without	without	without	8	with	without	$+0 \mathrm{~ms}$
						9	with	without	$+100 \mathrm{~ms}$
D	with	without	with	without	with	A	with	without	$+200 \mathrm{~ms}$
						B	with	without	$+300 \mathrm{~ms}$
E	with	without	without	with	without	C	with	with	$+0 \mathrm{~ms}$
						D	with	with	$+100 \mathrm{~ms}$
F	with	without	with	with	with	E	with	with	$+200 \mathrm{~ms}$
						F	with	with	+ 300 ms

with monitoring of protective doors (inputs antivalent) / monitoring of the emergency off circuits (inputs equivalent)

Hex-switches 1 and 3 Hex-switchpositions	start / stop of closing stroke		overrun traverse control	EDM stop valves monitoring	Monitoring of the protective doors antivalent switching Monitoring of the Ernergency OFF equivalent switching	Hex-switches 2 and 4 Hex-switchpositions	slow speed traverse information	* switching over tolerance enhancement of the valve position monitors
	Monitoring of the foot pedal antivalent	soft-breaking when the foot-pedal was released						
0	with	with	without	without	with	8	without	+ 0 ms
1	with	with	without	with	with	9	without	+100 ms
2	with	with	with	without	with	A	without	$+200 \mathrm{~ms}$
3	with	with	with	with	with	B	without	$+300 \mathrm{~ms}$
4	with	without	without	without	with	C	with	$+0 \mathrm{~ms}$
5	with	without	without	with	with	D	with	+100 ms
6	with	without	with	without	with	E	with	+ 200 ms
7	with	without	with	with	with	F	with	+ 300 ms

* Attention!

Select always the shortest possible switching over tolerance enhancement of the valve position monitors!

The Hex-switches must always be programmed in pairs (1 and 3, 2 and 4).
Within each pair, equal values must be programmed.

2. Operating modes with additional Safety control (e.g.. Safety PLC FPSC)

Hex-switches 1 and 3 Hex-switchpositions	start / stop of Monitoring of the foot pedalantivalent	losing stroke inputs tor release of closing stroke FUS / FUO	overrun traverse control	Monitoring of protective doors / Emergency OFF equivalent switching	Hex-switches 2 and 4 Hex-switchpositions	EDM Stop valve monitoring	slow speed traverse information	* switching over tolerance enhancement of the valve position monitors
0	without	equivalent	without	without	0	without	without	+ 0 ms
1	without	equivalent	without	with	1	without	without	+100 ms
2	without	equivalent	with	without	2	without	without	+ 200 ms
3	without	equivalent	with	with	3	without	without	+ 300 ms
4	with	antivalent	without	without	4	without	with	$+0 \mathrm{~ms}$
5	with	antivalent	without	with	5	without	with	+100 ms
6	with	antivalent	with	without	6	without	with	+ 200 ms
7	with	antivalent	with	with	7	without	with	+ 300 ms

* Attention!

Select always the shortest possible switching over tolerance enhancement of the valve position monitors!
example:

Hex switch	1	2	3	4
Hex switch position	3	1	3	1

Hex-switches 1 and 3 Hex-switchpositions	start / stop of closing stroke Monitoring of inputs for re- lease of clo- the foot peda- lantivalent sing stroke FUS / FUO		overrun traverse control	Monitoring of protective doors Emergency OFF equivalent switching
3	without	equivalent	with	with

Hex-swit- ches 2 and 4 Hex-switch- positions	EDM Stop valve monitoring	slow speed traverse in- formation	* switching over tolerance enhance- ment of the valve position monitors
$\mathbf{1}$	without	without	+100 ms

Displaying of conditions by the Muting lamp

lamp is out (flashing is hardly recognizable) : during the closing movement the proitective field is at least partially avctivated
lamp is constantly on: The protective field of the AKAS® ist not activated. AKAS® only permits closing strokes in slow speed.
The lamp is flashing slowly : about once per second: EDM is not in Stop condition, or the rear reset button must be released, or the press brake must be opened completely in order to quit the slow speed range to enbable the triggering of $\mathrm{SP}=0$.
The lamp is flashing rapidly: about five times per second: AKAS® is in interlock state. Carry out a voltage reset.

Displaying of conditions by the Ajustment control-

LEDs
see also page 14

LEDs are flashing slowly about once per second: Press has successfully stopped at the cam during the overrun traverse test, only when the cam is free again, the OSSDs can be enabled again. The ajustment controll-LEDs are flashing slowly until the machine is not opened completely.

AKAS®-LCF/SBM
E3, E1, E2

Fig. 28.1

Indicator LEDs

LED is on if box bending funktion is activated

Indicator LEDs for in- and outputs

Outputs for release of rear stoppers
Input for Overruntraverse controll
Inputs for control of protective grids or
doors and emergency-off circuits

Inputs for press start / stop (release of closing stroke)

Input for stop contactor control
Input for safety point
Output for demand for slow speed
Input for position control in slow
speed

* If the lateral protective doors are open: all other protective doors / protective circuits must be closed. NA1 must be lit. NA2, NA3 must be dark if the protective door contacts are equivalent.
If the protective door contacts are antivalent, NA2 must be lit, and NA3 must be dark. If necessary check the contacts). IF the RXOK-LEDs are not lit, activate the RESET-Button(s). If the LEDs still remain dark, open and close all other protective doors / protective circuits, then activate the RESET-Button(s).
If the lateral protective doors are closed: all other protective doors / protective circuits must be equally closed. NA1, NA2, NA3 must be lit if the protective door contacts are equivalent.
If the protective door contacts are antivalent, NA1 and NA 3 must be lit, and NA2 must be dark. (If necessary check the contacts). IF the RXOK-LEDs are not lit, activate the RESET-Button(s). If the LEDs still remain dark, open and close all protective doors / protective circuits, then activate the RESET-Button(s).

Status messages, warnings and Error reports via the RS 232 serial interface

The AKAS® displays messages by serial transfer via its RS 232 interface; transfer format: 9600 baud, 1 start bit, 8 data bits, 1 stop bit. The messages have even parity and will be repeated at least three times. The time gap between 2 messages is at least 100 ms . At the receiver, defective messages are gated, because only those messages are accpted that fulfil the following conditions: an even parity, successful reception of the message is provided if it is received at least 3 consecutive times and if its complete compatibility to one of the message possibilities indicated below is given.
There are different kinds of messages:

- Information concerning the status of the AKAS® or handling directions for the operator, here are Bit 0 and Bit $1=1$,
- Warnings concerning errors that, if received three times one immediately after the other, may lead to the interlocking of the AKAS®, here is Bit $0=0$ and Bit $1=1$,
- Error reports of the interlocked $A K A S ®$, here is Bit $0=1$ and Bit $1=0$.

Status messages, handling directions for the operator (binary $x x x x x x 11$)
background grey: other message or no message, if monitoring functions are partially cancelled

message transferred byte decimal	operating mode	description :possible text in the display system	handling directions
3		front reset button does not : enable	verify reset button and cable leading to the normally closed contact of the foot pedal if interrupted
3	antivalent foot pedal inputs without protective circuit monitoring	normaily closed contact of the foot pedal does not enable	verify the cable leading to the normally closed contact of the foot pedal if interrupted
3	equivalent foot pedal inputs	error at the request for release of the closing stroke	check the equivalent switching lines going FUO and FUS . They are evaluated as "different"
7		Mutinglamp does not light up	see message 63
15		Stop at the overrun traverse cam	during overrun traverse test
15	without overrun traverse control	--	
23		open the press completely 'in order to quit the safety : point range	if this message is displayed after every pressing and releasing of the foot pedal, check the SP connecting circuit for short circuits
39		release foot pedal	
43		overrun traverse OK	during overrun traverse test
43	without overrun traverse control	-	-
51		rear reset buuton is defective or the EDM is not in :Stop status	check rear reset button for short-circuits
51	without EDM	rear RESET button is defective	check rear reset button for short circuit
51	without protective circuit monitoring	EDM is not in Stop Status	Check EDM Signals
51	without EDM and without protective circuit monitoring	wrong poetntial at EDMO or EDMS	check the connectors for short circuits
63		Mutinglamp does not light up	open the press completely. If this message is repeated at the following new stroke and the internal mu:ting lamp does not light up,there is an internal error at 'the version that has no connection option of an external muting lamp. With the version with external con:nection option of an external Muting lamp, the connection KAST must be checked for short-circuits on -.
83		overrun traverse too long	during overrun traverse test
83	without overrun traverse control		-
95		overrun traverse mearue: ment has not been carried out	possible reasoin the protective field is interrupted, or :the protective circuit is interrupted, or the foor pedal is 'released, or no fast speed during the overrun traverse :measurement, evtl. because the stroke for the ober; run traverse measurement has not been started by : the UDC of the machine. Open the press completely : and carry out a new stroke for the overrun traverse measurement.
95	without overrun traverse control		-

Status messages, handling directions for the operator (binary $\mathbf{x x x x x x 1 1)}$

background grey: other message or no message, if monitoring functions are partially cancelled

message transferred byte decimal	operating mode	description possible text in the display system	handling directions
99		no overrun traverse test was carried out because of slow speed during overrun traverse test	set the switch-over point onto the normally required position, open the press until the machines reaches its UDC and carry out a new stoke for overrun taverse measurement
111		interrupted protective circuit	Release all protective grids and Emergency off buttons
111	no monitoring of the protective circuit	- Internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
119		error within the protective circuits, re-disable and enable them	open again all protective grids and Emergency off buttons and close them again so that a possible bad contact is activated again
119	no monitoring of the protective circuit	IInternal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
123		error within the protective grids, re-open and close them	re-open and close the protective grids so that a possible bad contact is activated again
123	no monitoring of the protective circuit	Internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
135		lateral protective grids are : open, i.e. protection by AKAS® is cancelled, activate RESET	Press can close only in slow speed
135	no monitoring of the : protective circuit	Internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
139		error within lateral grids or Emergency-OFF-button, open and close them once more	open and close again aill lateral protective grids and ail Emer-gency-OFF-buttons so that a possible bad contact is activated again
147		error within rear grids or Emer-gency-OFF-button, open and close them once more	open and close again all rear protective grids and all Emer-gency-OFF-buttons so that a possible bad contact is activated again
147	no monitoring of the protective circuit	IInternal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
159		Emergency OFF actvated	re-enable emergency OFF button
159	no monitoring of the protective circuit	Internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
163		rear protective grid is open	close rear protective grid
163	no monitoring of the protective circuit	Internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
175		lateral and rear protective grids are open	close all protective grids
175	no monitoring of the protective circuit	Internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
183		activate reset button for the ear protective grid	reset must be actvated after the operning and closing of the protective grids
183	no monitoring of the protective circuit		
187		open the press after overrun traverse test	Press has successfully stopped at the cam during the overrun traverse test, only when the cam is free again, the OSSDs can be enabled again The ajustment controll-LEDs are flashing slowly until the press brake is not opened completely.
187	no monitoring of the protective circuit		
195		box bending function is selected	
207		bending of flat sheet metal	
215		muting	AKAS@ provides only indirect protection by permitting the closing movement only in slow speed
219		foot pedal is released	during the closing movement, the foot pedal was released
231		interruption of the protective field	during the closing movement, the protective field was interrupted
235		activate emergency-OFF-reset of the grids	after the opening and closing of a protective grid, a reset must be carried out
235	no monitoring of the protective circuit		-
243		key switch is activated	Disable key switch. If the same message remains displayed, there is a risk of short-circuiting of the normally open foot pedal contact.

Warnings (binary xxxxxx10) error reports (binary xxxxxx01)

background grey: other message or no message, if monitoring functions are partially cancelled

Warnings issued when several consecutive malfunctions occur that lead to an interlocking of the AKAS@ with displayed error reports. The interlocking status can be cancelled only by a voltage reset.

ELEKTRONIK

Service

If you have questions that cannot be answered by reading this operation instruction manual, please contact us directly.

When calling, please have the following dara ready:
-Exact unit type and model
-Serial number(s)
-Symptom of the malfunction and/or fault description

Fiessler Elektronik GmbH \& Co. KG
Kastellstraße 9
D-73734 Esslingen

Phone: 0711/919697-0
Fax: 0711/919697-50
E-mail info@fiessler.de

Maintenance

The transmitter- and receiver lenses should be cleaned with a soft cotton swab at least once a month.
The spindle of the support should be lubricated with machine oil after 6 months.
The press brake protection systems AKAS® are maintenance-free with the exception of the supports.
On request by the customer, Fiessler Elektronik $G m b H$ \& Co . KG carries out the acceptance test and annual inspections. In addition, seminars providing customers with training in annual inspections are held at regular intervals.

Warranty

The company Fiessler Elektronik GmbH \& Co. KG refuses to accept any warranty claims if the device has been opened or if it has been modified.

Returning a unit

If, in the case of default, the necessity of returning the unit to Fiessler Elektronik arises, it will be very advantageous for a fast default diagnosis if the following topics are observed and observed:
-exact description of malfunction:
-did you frequently notice malfunctions at the machine where the light curtains are installed?
-any defaults or malfunctions in the past?
-etc..
-which operating mode has been used with this unit?
The more exactly the malfunction is described, the more accurate and faster we can determine it and repair it.

ELEKTRONIK

AKAS® accessories (electronic equipment)	part designation	order code
	AKAS® Muting System w. integrated overrun traverse control AMS/N, complete (incl. 2 magnetic sensors with $10 \mathrm{~m} \& 5 \mathrm{~m}$ cables, 1 magnetic tape)	AMS/N/K
	Safety double foot pedal FL2-528ZSD4-U	FS2-528ZSD4-U
	AKAS® Foot pedal for box-bending function	AKAS/Ped

ELEKTRONIK

Electrosensitive protective The press brake protection AKAS® is an electrosensitive protective device (ESPE).
equipement ESPE is characterised by the fact that a hazardous motion becomes interrupted or prevented if the light beams produced between the transmitter and receiver unit are interrupted.

Safety category 4 The AKAS® fulfils the safety class 4, in compliance with EN 954.
Devices of safety category 4 are self-monitoring electrosensitive protective devices (ESPE) and represent the highest safety class among the ESPE

Self-monitoring The electrosensitive protective device (ESPE) switches automatically into the "safe state" when it is faulty.

Standard Installation range Maximum distance between transmitter and receiver is 6 m (For longer range please get in contact with Fiessler Elektronik or your local dealer).

Overrun The part of the hazardous motion still taking place after interrupting the light beam.

Overrun traverse The distance covered during the overrun (e.g. by the ram of a press).

Overrun period The duration of the overrun traverse.
Response time The time that elapsed after light beam interruption until the switching action occurs.
Valve or contactor control Before every release of the output contacts the contactor control is checking whether the switching elements connected (relays, contactors or valves) have been released. A renewed release of the output contacts is only possible if the switching elements connected have been released. Thus a dangerous failure of switching-elements (relays, contactors or valves) caused by the hazardous motion is prevented.

Start interlock After initial operation or after a power supply interruption a renewed "enabling" is blocked by the start interlock. The renewed release of the switching unit is only possible by closing and opening of the start entry.

Restart interlock The restart interlock prevents any automatic releasing of the switching outputs after an interruption and re-enabling of the light beam (e.g. when penetrating the light beam).

Muting Short-time safe by-pass of the press brake protection $A K A S ®$ during material movement, i.e. during a plate bending process.

Box-bending By-pass of the receiver unit E1, during a box-bending process.

Service

As a special feature for training our customers, Fiessler Elektronik offers one-day safety workshops. Our service team provides you with expert advice and information for the reliable integration of our safety equipment into your machine.

homologations

In order to ensure and maintain the high quality level of the Fiessler safety products, a quality control security system has been established early. Fiessler Elektronik holds the DIN ISO EN 9001 Certificate and, thanks to the company-owned EMC laboratory, all products must pass a inspection without exception before they leave the company. All safety equipment comply with the applicable national and international standards. Development and Design is made in close cooperation with the German employer`s liablility insurance associations. All homologations are obtained only after having passed strict tests by the German surveyor organisation TÜV.

AWARD OF

APPRECIATION
for exemplary performance in the development of the press brake protection system AKAS.
The award was bestowed upon Fiessler Elektronik by the ministry of trade and commerce of the federal state of Baden-Württemberg.

